
JOURNAL OF SOFTWARE MAINTENANCE AND EVOLUTION: RESEARCH AND PRACTICE
J. Softw. Maint. Evol.: Res. Pract. 2005; 17:401–423
Published online 1 November 2005 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/smr.322

Research

Pair designing as practice for
enforcing and diffusing design
knowledge

Emilio Bellini1, Gerardo Canfora1,∗,†, Félix Garcı́a2,
Mario Piattini2 and Corrado Aaron Visaggio1

1RCOST-Research Centre on Software Technology, University of Sannio, Palazzo ex Poste, Viale Traiano,
82100 Benevento, Italy
2Alarcos Research Group, University of Castilla-La-Mancha, Paseo de la Universidad, 4,
13071 Ciudad Real, Spain

SUMMARY

Evolving software’s design requires that the members of the team acquire a deep and complete knowledge
of the domain, the architectural components, and their integration. Such information is scarcely addressed
within the design documentation and it is not trivial to derive it. A strategy for enforcing the consciousness
of such hidden aspects of software’s design is needed. One of the expected benefits of pair programming is
fostering (tacit) knowledge building between the components of the pair and fastening its diffusion within
the project’s team. We have applied the paradigm of pair programming to the design phase and we have
named it ‘pair designing’. We have realized an experiment and a replica in order to understand if pair
designing can be used as an effective means for diffusing and enforcing the design knowledge while evolving
the system’s design. The results suggest that pair designing could be a suitable means to disseminate and
enforce design knowledge. Copyright c© 2005 John Wiley & Sons, Ltd.

KEY WORDS: pair programming; pair design; experimental software engineering; design evolution; knowledge
management

1. INTRODUCTION

Documentation is the major source of information to successfully accomplish software evolution
tasks. Unfortunately, in certain cases reading the documentation is not enough to understand all of
the aspects of a software system. The evolution of software design can particularly benefit from a

∗Correspondence to: Gerardo Canfora, RCOST-Research Centre on Software Technology, University of Sannio, Palazzo
ex Poste, Viale Traiano, 82100 Benevento, Italy.
†E-mail: canfora@unisannio.it

Received 20 December 2004
Copyright c© 2005 John Wiley & Sons, Ltd. Revised 29 April 2005

Accepted 8 June 2005



402 E. BELLINI ET AL.

practice that fosters and fastens the knowledge transfer among the team’s members, for several reasons
as follows.

• Software evolution, as well as many other software engineering activities, is a cooperative
effort [1] and the executed process is not linear: changing the design as the first activity, then
documenting changes, writing the code, and finally regression testing the system. The team
usually follows a form of interleaved process: making decisions about small changes, codifying
and checking whether the changes make sense and work, confirming the design, documenting
the modifications, and completing and testing the implementation. The decisions made are the
result of a collective activity of trials and tests; as a consequence, the path of reasoning that led
to the decision is not formalized and remains embedded in the brains of the people who decided
and approved the modifications.

• The turnover of maintenance personnel determines a serious loss of experiences and knowledge
that is difficult to replace; it is more efficient and effective to ask people who know the system
to explain the tips and the traps of the architecture, rather than to attempt to extract them from
(huge and often out-of-date) documentation.

• Software’s design requires the capability to deal with different levels of abstractions:
implementation, database, business logic, presentation, deployment, interaction with other
systems, and communication protocols. Mastering all of these aspects and their integration is
not easy and, usually, the documentation does not address them explicitly.

• Documentation has a low communication bandwidth: acquiring information through
documentation requires time and in some situations time is a very scarce resource. ‘Face-to-face
channels offer the prospect of richer communication because of the ability to transmit multiple
cues[. . . ]important when there are high levels of equivocality (ambiguity) and uncertainty’ [2].

A strategy for diffusing the knowledge built by the individual engineers during their daily work and
consolidating it at the team or corporate level could be helpful; such a strategy is not intended as an
alternative to documentation, but as a means to complement and to improve the use of documents as a
source of information by fostering the ‘sense-making’ process.

Pair programming is an agile practice [3], consisting of two developers working on the same code
on the same machine: one develops the code, the other reviews it. Among the number of benefits
derived from the adoption of this practice enumerated in literature, knowledge transfer [4] is worth our
attention. The continuous collaborative work of the pair’s components fosters the flow of the knowledge
that is difficult to transmit with documentation, such as strategies, rationales, and techniques.

We applied pair programming practice to the design phase and named it ‘pair designing’.
Pair designing means that two designers work on the same design’s document on the same machine
and at the same time: the first designer named ‘driver’, actively writes the document and the other,
named ‘observer’, reviews it. The two roles can be switched during the work as needed: this usually
happens when the driver does not know how to proceed, whereas the observer knows the way to solve
the problem. The observer can also accomplish different activities from reviews which are helpful for
reaching the goal of the current task. Our conjecture is that pair designing can help a team’s members
to quickly obtain complete and correct knowledge of the software.

This paper aims at investigating whether the pair designing can be used as a means for enforcing and
diffusing the design’s knowledge among the members of the project’s team.

Copyright c© 2005 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2005; 17:401–423



PAIR DESIGNING AS PRACTICE FOR ENFORCING AND DIFFUSING DESIGN KNOWLEDGE 403

Diffusing knowledge concerns the dissemination of knowledge among the team’s members. Thus, it
is essentially a process of sharing knowledge by socialization. This may be useful at the initial phases
of the process when the team is required to reach a certain level of knowledge about the system in order
to properly accomplish maintenance tasks.

Enforcing knowledge means increasing the overall knowledge of team’s members by combining
individual pieces of knowledge. It may be useful when the team is already familiar with the system, but
some specific features and characteristics are still unclear. The enforcement of knowledge is required
after having diffused the knowledge; it is intended as a means for reducing reworks and latency times
due to the limited knowledge of the design of software.

We define the ‘design’s knowledge’ as the body of information concerning the architecture of a
software system, the business rules describing the domain in which the system operates, and the
rationales that the architecture is based on.

We have realized an experiment and a replica with the aim of answering the following research
questions.

(1) Is pair designing effective for enforcing the design’s knowledge of the project team’s members
during design evolution tasks?

(2) Is pair designing effective for diffusing the design’s knowledge of the project team’s members
during design evolution tasks?

In this paper we discuss the outcomes of the experiment and the replica addressing the concerns
listed above. The paper proceeds as follows: Section 2 discusses the related work; Section 3 shows
the experiment’s and the replica’s design; Section 4 analyses the outcomes; Section 5 discusses the
validity of the experiments’ outcomes; and, finally, Section 6 draws the conclusions.

2. RELATED WORK

The attention of researchers has initially focussed mainly on the quality and productivity of pair
programming [5–7]. Recently, the target of pair programming investigation has turned to learning and
knowledge transfer [8–10]. Williams and Kessler [11] found that pair programming fosters knowledge
leveraging between the two programmers, particularly tacit knowledge.

In [8], the authors investigated, through an experiment, which knowledge needs to be addressed in
order to effectively implement pair programming when the pair’s components are distributed. Williams
and Upchurch [12] examined the ways pair programming may enhance teaching and learning in
computer science education. Students were able to complete programming assignments faster, with
higher quality, and appeared to learn faster. McDowell et al. [4] investigated the effects of pair
programming on student performance in an introductory programming class. The results show that
students who worked in pairs produce better programs. The research reported in [13] concluded that
students perceived pair programming as valuable to their learning.

Some authors emphasize the need for establishing a common culture of software design and the
spread of knowledge about the architecture among the members of a software project. In [14]
the authors proposed an approach based on Design Decision Trees in order to: consciously consider
the choices they make; explicitly specify their goals and assumptions; and consider and specify

Copyright c© 2005 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2005; 17:401–423



404 E. BELLINI ET AL.

alternative and solutions. Another debated issue is the linkage between the domain’s knowledge and
the software’s components. A possible solution for this problem is provided by Li et al. [15] and it is
based on representing domain knowledge with simplified semantic networks. Using visualization tools
is a direction that many researchers are taking: Jiawei et al. [3] described a method to visualize the
requirement’s specification with the aim of supporting the reuse of design knowledge.

Organizational literature in the last 20 years has offered several relevant contributions about
the social dimension of tacit/explicit knowledge conversion processes [16], the different nature of
information and of knowledge [17], and the relevance of contexts affecting the knowing process,
such as mediated, situated, provisional, pragmatic, and contested process [18]. The continuous
discussion between pair’s members allows the knowledge to flow from one partner to the other
naturally, enhancing the sense making of explicit knowledge formalized in a number of tools
(handbooks, procedures’ descriptions, and many others) and the sharing of tacit knowledge embedded
in organizational routines.

The current work is part of a research plan, aiming at evaluating the relationship between the practice
of pair designing and the knowledge building about the ‘big picture’ of the system. A preliminary
experiment provided conclusions which led the authors to afford more systematic research, addressed
with this paper: the results were discussed in [19]. Two main outcomes were obtained. First, all of
the experimental subjects who worked in pairs showed greater knowledge with respect to those who
worked as singletons. Second, the process of knowledge building was more stable for pairs than for
singletons: the knowledge growth of pairs can be predictable and repeatable within certain limits.
The experiment discussed in [20] investigated how the educational background of pair’s components
can affect the effectiveness of the practice if used for leveraging knowledge. We found confirmations
that forming pairs with individuals with the same educational background emphasizes the expected
benefits of pair designing.

3. THE EXPERIMENTS

This section illustrates the experiments and discusses the outcomes.

3.1. Definitions

The experiments were executed with the purpose of testing the following null hypotheses:

H0a: the pair designing does not affect the diffusion of design knowledge when performing evolution
tasks;

H0b: the pair designing does not affect the enforcement of design knowledge when performing
evolution tasks.

The alternative hypotheses are:

H1a: the pair designing affects the diffusion of design knowledge when performing evolution tasks;

H1b: the pair designing affects the enforcement of design knowledge when performing evolution tasks.

Copyright c© 2005 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2005; 17:401–423



PAIR DESIGNING AS PRACTICE FOR ENFORCING AND DIFFUSING DESIGN KNOWLEDGE 405

3.2. The first experiment characterization

Subjects

The experiment was executed with the collaboration of the students of the Master‡ of
Technologies of Software (MUTS) and Master of Management and Technologies of Software
(MUTEGS), higher education university courses for post-graduate students, at University of Sannio
(http://www.ing.unisannio.it/master/). Students of MUTS hold a scientific degree (engineering,
mathematics, physics), whereas students of MUTEGS hold an economic/humanistic degree
(economics, philology, literature, philosophy). Both courses provide the same basic education in
computer engineering (operating systems, programming languages, network, database, and software
engineering), but MUTS students are educated for developing and maintaining software systems,
whereas MUTEGS students deal with the economic and organizational issues of software lifecycles.
The two Master courses are held contemporarily and both last one year, during which students attend
theoretical classes and laboratory sessions, with the same professors and lecturers, develop a large and
complex project in connection with an enterprise, participate in seminaries from international experts,
and perform a three-month stage in software companies.

The subjects were organized as follows:

• five pairs with two MUTS students;
• five pairs with two MUTEGS students;
• the other 16 subjects (MUTS and MUTEGS) worked as solo designers.

All of the groups were formed randomly.

Questionnaires

We prepared two questionnaires, QA and QB (see Appendix A), in order to measure the dependent
variables. Both questionnaires were distributed as entry and exit questionnaires, so that each subject
randomly had QA (or QB) at entry and, conversely, QB (or QA) at exit. This avoided any dependency
of the results on the questionnaire itself. The questions concerned architectural and functional aspects
of the system.

Variables

There were two dependent variables: the knowledge diffusion and the knowledge enforcement.
The subjects studied the design of the system before starting the assignment in order to acquire an
initial knowledge of the system. This level of knowledge was measured with the entry questionnaires.
The subjects answered the exit questionnaires after having performed evolution tasks on the
system. The knowledge diffusion was measured by calculating the grades of the exit questionnaires.
The knowledge enforcement was calculated as the difference between the exit questionnaire’s grade

‡The Italian educational system defines ‘Master’ as a post-graduation course aimed at specializing students in certain topics.

Copyright c© 2005 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2005; 17:401–423



406 E. BELLINI ET AL.

and the entry questionnaire’s grade. The questionnaires were evaluated in this way: each correct answer
was evaluated 1; each incorrect answer was evaluated 0.

Rationale for the sampling of the population

Students of software engineering courses are suitable for such an experiment because they study
software architecture and software system design. Furthermore, they are usually employed as software
architects or designers after graduation. MUTS and MUTEGS students are a fine population’s sample,
considered that they experienced actual project work during the Master’s course, established together
with the enterprises funding the courses. Since the students have comparable curricula, there is no
relevant bias in the samples of pairs and solos; however, the statistical tests to ascertain that the
randomization of pair’s samples and solos’ samples was realized are discussed in advance.

Assignment

In order to evaluate the knowledge built while evolving the system design, the assignment for the
subjects consisted of improving the design of a system. The design of the system was formalized in
UML and included textual specification of the system’s requirements, two use cases diagrams, and
two class diagrams (for a total of 15 classes). An excerpt of the design documentation is shown in
Appendix A. Experimenters developed the design. Considered the time available, we preferred to avoid
bulky documentation.

There were basically two maintenance tasks:

• reduce complexity, by erasing entities or relationships between entities not fundamental for
understanding;

• improve readability, by changing existing entities (use cases, actors, classes, methods) or adding
new ones.

This kind of assignment was targeted at maximizing the knowledge built by doing; as a matter of fact,
evolving software systems needs the programmer to analyse the system in depth. The system design
was realized by taking into account the knowledge of subjects, with the aim of making the objects
representative of the population.

The process

The process of the experimental run was the following:

• each subject studied documentation for 30 minutes, individually;
• each subject answered an entry questionnaire, individually, for about 15 minutes. The entry

questionnaire was aimed at establishing the baseline, i.e., the level of knowledge that the subjects
built by reading the documentation before executing the tasks;

• the pairs and the solo designers performed the maintenance tasks for 2 hours;
• each subject answered an exit questionnaire individually, in order to understand the knowledge

built by modifying the system according to two different styles, pair and solo.

Copyright c© 2005 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2005; 17:401–423



PAIR DESIGNING AS PRACTICE FOR ENFORCING AND DIFFUSING DESIGN KNOWLEDGE 407

Table I. Design of the first experiment.

Subjects Treatment Input Output

Five MUTEGS
Five MUTEGS

Paired MUTEGS
MUTEGS

Requirement
specification;
Use case diagram;
Class diagram;
Entry questionnaire QA
(or QB);
Exit questionnaire QB
(or QA).

Modifications to use case diagram and
class diagram;
Answered entry questionnaire QA
(or QB);
Answered exit questionnaire QB
(or QA).

Five MUTS
Five MUTS

Paired MUTS
MUTS

Eight MUTS
Eight MUTEGS

Solo
Solo

Before running the experiments the subjects participated laboratory sessions for training them in pair
designing.

Although we would have liked to use a CASE tool, such as Rational Rose [21] or ArgoUML [22],
we finally decided to use only pen and paper. The reason was that some subjects could be more
familiar with these kinds of tools and this could inject bias into the results. As a consequence, we
would have needed more time for preparation in order to equalize the ability of subjects to work with
tools. Appendix A shows an excerpt of the experimental material. In Table I the experimental design
for the first experiment is provided.

3.3. The replica in Spain

The subjects were students enrolled at the Department of Computer Science at the University of
Castilla–La Mancha in Spain. The first group was composed of 42 students enrolled in the final-
year (third) of the Computer Science (BSc) in the specialization of Management (hereafter referred
as 3BScMngmt); the second group was composed of 39 students enrolled in the final-year (third) of the
Computer Science (BSc) in the specialization of Systems (3BScSys in the following); and finally the
third group consisted of 12 students enrolled in the final-year of the fifth year of MSc (named 5MSc in
the following). The replica had a different experimental design (Table II) with respect to the previous
experiment: 32 randomized pairs where formed and 32 subjects were left working as solo designers.
Table II shows the experimental design for the replica.

Dependent and independent variables, the process, the assignment, and the questionnaires remained
the same, but the overall experiment lasted 2 hours and the experimental package was properly
translated in Spanish by the native Spanish language speaking authors.

Copyright c© 2005 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2005; 17:401–423



408 E. BELLINI ET AL.

Table II. Experimental design of the replica.

Subjects Treatment Input Output

64 students
3BScMngmt
3BscSys
5MSc

Paired
3BScMngmt–
3BScMngmt
3BscSys–
3BscSys
5MSc–5MSc

Requirement
specification;
Use case diagram;
Class diagram;
Entry questionnaire QA
(or QB);
Exit questionnaire QB
(or QA).

Modifications to use case diagram and
class diagram;
Answered entry questionnaire QA
(or QB);
Answered exit questionnaire QB
(or QA).

32 students
3BScMngmt
3BscSys
5MSc

Solo

4. ANALYSIS OF DATA

In order to accept the outcomes of the experiments as valid, it is necessary to make sure that there are no
relevant differences in the samples to compare: the samples of solos and pairs have to be equivalent for
each experiment. If some differences on the entry questionnaires are detected, the randomization was
not accomplished correctly. Table III shows this analysis for the experiment and for the replica. Mann–
Whitney’s method was used in all the tests because the data of samples were not normally distributed
and the p-level threshold value was fixed at 5%.

The tests in Table III show that the MUTS subjects working as solos and those working in the pairs
did not present significant differences at the entry questionnaire; similarly, the MUTEGS subjects of
the solos’ set and those of the pairs’ set did not present significant differences. Similar considerations
can be made for the randomization in the samples of the replica: also in this case there is no significant
differences between the subjects performing solo and pair designing. It is possible to conclude that the
randomization was realized correctly.

4.1. The knowledge diffusion

In Table IV the results of statistical tests for rejecting the null hypothesis H0a are reported. We used the
Mann–Whitney test with p-level at 0.05.

The null hypothesis can be rejected in the MUTS sample case, but it cannot be rejected in the
MUTEGS sample case. This is due to the different skills of MUTS and MUTEGS students. MUTS
students come from scientific studies whereas MUTEGS students come from other kinds of studies.
MUTS students are supposed to be more familiar with algorithms and deductive reasoning than
MUTEGS students. Our conjecture is that the effectiveness of the practice could be affected by
the ability of subjects to perform pair design. As a matter of fact, there is statistical evidence that
the performance of the two populations in terms of knowledge is different, as the third row in the

Copyright c© 2005 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2005; 17:401–423



PAIR DESIGNING AS PRACTICE FOR ENFORCING AND DIFFUSING DESIGN KNOWLEDGE 409

Table III. Tests for validating the randomization of sample.

Test between Rank sum α Rank sum β p-level Experiment

Entry Questionnaires of
Subjects of MUTS Pairs sample (α)
Subjects of MUTS Solos sample (β)

171.0000 39.0000 0.214 768 Italian experiment

Entry Questionnaires of
Subjects of MUTEGS Pairs sample (α)
Subjects of MUTEGS Solos sample (β)

112.0000 59.0000 0.130 919

Entry Questionnaires of
Solos of the 3BScSys sample (α)
Pairs of the 3BScSys sample (β)

425.0000 395.0000 0.214 741 Spanish experiment

Entry Questionnaires of
Solos of the 5MSc sample (α)
Pairs of the 5MSc sample (β)

31.5000 465.0000 0.229 767

Entry Questionnaires of
Solos of the 3BScMngmnt sample (α)
Pairs of the 3BScMngmnt sample (β)

425.0000 395.0000 0.321 966

Table IV. Tests of the knowledge diffusion hypotheses.

Test between Rank sum α Rank sum β p-level Experiment

MUTS pairs (α)
MUTS solos (β)

116.5000 54.50 0.049 Italian experiment

MUTEGS pairs (α)
MUTEGS solos (β)

78.50 57.50 0.270

MUTS pairs (α)
MUTEGS pairs (β)

135.0000 75.00 0.023

Pairs 5MSc (α)
Solos 5MSc (β)

51.5000 26.5000 0.030 912 Spanish experiment

Pairs 3BScSys (α)
Solos 3BScSys (β)

253.0000 567.0000 0.000 17

Pairs 3BScMngmnt (α)
Solos 3BScMngmnt (β)

447.0000 778.0000 0.000 00

table shows. From the first experiment we can conclude that: (i) pair design can diffuse knowledge
better than solo programming; and (ii) the effectiveness of pair design could be affected by the type of
population.

The replica realized in Spain produced empirical evidence that pair designing can help the diffusion
of design’s knowledge in all three samples. The replica reinforces the findings of the experiment run in
Italy.

Copyright c© 2005 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2005; 17:401–423



410 E. BELLINI ET AL.

Table V. Descriptive statistics of the data.

Pairs Standard deviation Average Maximum Minimum Experiment

MUTS pairs 1.75 5.8 9 4 Italian experiment
MUTEGS Pairs 1.60 3.9 7 1
MUTS Solos 1.03 4.25 6.00 3.00
MUTEGS Solos 1.55 5.13 7.00 3.00

Pairs 3BScSys 1.02 6.00 7.00 3.00 Spanish Experiment
Solos 3BScSys 1.26 4.44 6.00 3.00
Pairs 5MSc 0.98 6.17 7.00 5.00
Solos 5MSc 0.82 5.33 7.00 5.00
Pairs 3BScMngmnt 0.73 6.30 8.00 5.00
Solos 3BScMngmnt 0.94 4.21 5.00 1.00

0

2

4

6

8

10

Std Dev. Average Max Min

Variables

MUTS Pairs

MUTS Solos

Figure 1. Descriptive statistics of MUTS samples.

Table V shows the descriptive statistics of data samples and Figures 1–5 compare the descriptive
statistics of the five samples.

It appears that in all cases pairs outperformed solos in terms of knowledge built, as the values of
average, maximum and minimum demonstrate. This does not happen with MUTEGS students: as
previously mentioned, this could be due to the different skills MUTS and MUTEGS students have.
As a matter of fact, there is empirical evidence that the MUTEGS population is different from the
MUTS population.

The Spanish samples show that pairs constantly achieved higher values of knowledge diffusion than
solos.

Copyright c© 2005 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2005; 17:401–423



PAIR DESIGNING AS PRACTICE FOR ENFORCING AND DIFFUSING DESIGN KNOWLEDGE 411

0

1

2

3

4

5

6

7

8

Std Dev. Average Max Min

Variables

MUTEGS Pairs

MUTEGS Solos

Figure 2. Descriptive statistics of MUTEGS samples.

0

1

2

3

4

5

6

7

8

Std Dev. Average Max Min

Variables

Spanish Pairs 3BScSys

Spanish Solos 3BScSys

Figure 3. Descriptive statistics of 3BScSys samples.

4.2. The knowledge enforcement

Table VI reports the results of the tests of the H0b hypothesis.

Table VI shows that pair design helps enforce the knowledge with statistical evidence for the MUTS
sample, whereas the results of the MUTEGS subjects did not report empirical evidence. This confirms
the conclusions of knowledge diffusion’s analysis: the type of educational background affects the
enforcement of knowledge obtained with pair designing. As a matter of fact, the third row demonstrates
that the two samples obtained statistically different enforcement of knowledge after having performed
pair design.

Copyright c© 2005 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2005; 17:401–423



412 E. BELLINI ET AL.

0

1

2

3

4

5

6

7

8

Std Dev. Average Max Min

Variable

Spanish Pairs 5MSc

Spanish Solos 5MSc

Figure 4. Descriptive statistics of 5MSc samples.

0

1

2

3

4

5

6

7

8

9

Std Dev. Average Max Min

Variables

Spanish Pairs

3BScMngmnt

Spanish Solos

3BScMngmnt

Figure 5. Descriptive statistics of 3BScMngmnt samples.

The replica basically confirms the findings of the experiment, because all of the rows show the
p-level under the threshold of 0.05. Only the first row reports a greater value, but it is relatively close
to 0.05. The descriptive statistic, reported in Tables VII and VIII, can suggest further observations.

As Figure 6 shows, the standard deviation of pairs is less than the standard deviation of solos for
the MUTS sample, but this does not occur in the MUTEGS sample: this points out that the knowledge
enforcement in the (MUTS) pairs is more predictable than in the solos. Pair designing can be used for
planning the individual growth of team’s members.

The effectiveness of the practice could depend on the educational background of pair’s members,
as already observed. Figure 7 shows the average and the maximum values of the experiment’s sample:
pairs outperformed solos.

Copyright c© 2005 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2005; 17:401–423



PAIR DESIGNING AS PRACTICE FOR ENFORCING AND DIFFUSING DESIGN KNOWLEDGE 413

-4,000

-3,000

-2,000

-1,000

0,000

1,000

2,000

3,000

MUTS Pairs MUTS Solos MUTEGS Pairs MUTEGS Solos

Subjects

min

std dev

Figure 6. The standard deviation and the minimum values.

-2,000

-1,000

0,000

1,000

2,000

3,000

4,000

5,000

6,000

MUTS Pairs MUTS Solos MUTEGS Pairs MUTEGS Solos

Subjects

average

max

Figure 7. The average and the maximum values.

Copyright c© 2005 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2005; 17:401–423



414 E. BELLINI ET AL.

Table VI. Tests of the knowledge enforcement hypotheses.

Test between Rank sum α Rank sum β p-level Experiment

MUTS pairs (α)
MUTS solos (β)

123.500 47.5000 0.0102 Italian experiment

MUTEGS pairs (α)
MUTEGS solos (β)

53.500 66.5000 0.2164

MUTS pairs (α)
MUTEGS pairs (β)

110.500 42.5000 0.0428

Spanish pairs 3BScSys (α)
Spanish solos 3BScSys (β)

49.5000 28.5000 0.086 984 Spanish experiment

Spanish pairs 5MSc (α)
Spanish solos 5MSc (β)

551.0000 269.0000 0.000 942

Spanish pairs 3BScMngmnt (α)
Spanish solos 3BScMngmnt (β)

51.5000 26.5000 0.042 337

Table VII. Descriptive statistic of the experiment.

Statistical parameter MUTS pairs MUTS solos MUTEGS pairs MUTEGS solos

Average 2.000 −1.400 −0.800 −0.750
Maximum 5.000 2.000 1.000 1.000
Minimum −1.000 −3.000 −3.000 −2.000
Standard deviation 1.915 2.074 1.643 1.500

Table VIII. Descriptive statistics of the replica.

5MSc 5MSc 3BScSys 3BScSys 3BScMngmnt 3BScMngmnt
Statistical parameter pairs solos pairs solos pairs solos

Average 1.167 −0.500 1.714 −0.579 1.111 −1.036
Maximum 3.000 3.000 4.000 3.000 3.000 2.000
Minimum −1.000 −2.000 −1.000 −4.000 −1.000 −5.000
Standard deviation 1.722 1.871 1.736 1.865 1.278 1.856

The descriptive statistics of the replica in Spain are reported in Table VIII. The replica’s results
confirm the results of the experiment, as the graph in Figure 8 demonstrates: the pairs outperformed
the solos in every sample involved in the replica.

Figure 9 shows that the standard deviations of the pairs of each sample are smaller than the
corresponding value of the solo’s sample: this suggests that the enforcement in the pairs is more
predictable than in the solos.

Copyright c© 2005 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2005; 17:401–423



PAIR DESIGNING AS PRACTICE FOR ENFORCING AND DIFFUSING DESIGN KNOWLEDGE 415

-2,000

-1,000

0,000

1,000

2,000

3,000

4,000

5,000

5M
S
c 
P
ai
rs

5M
S
c 
S
ol
os

3B
S
cS

ys
 P

ai
rs

3B
S
cS

ys
 S

ol
os

3B
S
cM

ng
m

nt P
airs

3B
S
cM

ng
m

nt S
olo

s

Subjects

average

max

Figure 8. The average and the maximum values in the replica.

-5,000

-4,000

-3,000

-2,000

-1,000

0,000

1,000

2,000

3,000

5M
S
c 
P
ai
rs

5M
S
c 
S
ol
os

3B
S
cS

ys
 P

ai
rs

3B
S
cS

ys
 S

ol
os

3B
S
cM

ng
m

nt P
airs

3B
S
cM

ng
m

nt S
olo

s

Subjects

min

std dev

Figure 9. The minimum and the standard deviation.

Copyright c© 2005 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2005; 17:401–423



416 E. BELLINI ET AL.

4.3. Comparing knowledge diffusion and enforcement

The results for the diffusion and the enforcement report similar conclusions:

• pair designing is helpful both for diffusing the knowledge within the project team when a large
number of team’s members are not familiar with the software design and for enforcing the
knowledge of each designer when they have built a preliminary idea of the software;

• the skills and individual abilities of team members could seriously affect the effectiveness of
the practice; this entails that if the project manager plans to use pair designing for enforcing the
design knowledge, an assessment of the team members is required; and

• the enforcement of knowledge is more predictable when using pair designing than the
enforcement due to traditional designing.

5. EXPERIMENTAL THREATS

Threats to construct validity

The dependent variables aim at capturing the knowledge. We proposed questionnaire grading that
surely cannot capture the overall aspects of the object to be measured. Tacit knowledge for its intrinsic
nature is hard to formally describe and quantify. We consider what we measure as an approximation of
what we intend to measure.

Threats to internal validity

The following issues have been dealt with.

• Differences among subjects. Using a within-subjects design, error variance due to differences
among subjects is reduced. In this experiment, students had a degree with experience in using
UML. It is one of the main topics of their curriculum.

• Learning effects. The subjects were required to deal with only one run with only one assignment,
so the learning threat was cancelled.

• Fatigue effects. On average the experiment lasted a time short enough that fatigue was not
relevant. As a confirmation, the students asked for a longer time to accomplish better the
assignment.

• Persistence effects. In order to avoid persistence effects, the experiment was run with subjects
who had never performed a similar experiment.

• Subject motivation. The participants were volunteers, in order to help us in our research.
We motivated students to participate in the experiment, explaining to them that they were
learning a practice that should be useful in their professional career.

• The experimental package. Both in the experiment and in the replica the results of the run were
independent from the experimental package, as shown in Table IX. We performed a Mann–
Whitney test with the p-level fixed at 0.05, and there is no evidence that the differences due to
the questionnaires were statistically significant.

Copyright c© 2005 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2005; 17:401–423



PAIR DESIGNING AS PRACTICE FOR ENFORCING AND DIFFUSING DESIGN KNOWLEDGE 417

Table IX. Test on the questionnaires.

Test between Rank sum α Rank sum β p-level

Questionnaire A (α) 540.0000 406.0000 0.161
Questionnaire B (β)
in the experiment

Questionnaire A (α) 598.0000 677.0000 0.2068
Questionnaire B (β)
in the replica

Threats to external validity

Two threats to validity have been identified which limit the possibility of applying generalization.

• Materials and tasks used. In the experiment we have used the system design’s documentation
prepared by experimenters. The system showed a discrete degree of complexity, because it
describes an existing system.

• Subjects. Students play a very important role in the experimentation in software engineering,
as pointed out in [23,24]. In situations in which the tasks to perform do not require industrial
experience, experimentation with students is viable [23,25].

6. CONCLUSIONS

Evolving software’s design requires that all of the members of the team reach a deep and complete
knowledge of the domain, the architectural components, and their integration. A weak knowledge of
these issues can lead to wrong choices and frequent reworks during evolution tasks on the software
design. One of the expected benefits of pair programming is the enforcement of the software’s
knowledge within the project’s team. We applied the paradigm of pair programming to the design
phase and named it ‘pair designing’. A preliminary experiment demonstrated that pair designing can
be helpful for enforcing the knowledge of the software within the project’s team.

We realized an experiment and a replica with the aim of gathering empirical evidence on the
effectiveness of pair designing for diffusing and enforcing the design knowledge within the project
team.

The experiments were realized in two universities: the first was realized at the University of Sannio
in Italy and the second was realized in the University of Castilla–La Mancha in Spain.

The following conclusions can be drawn.

• There is empirical evidence that, in the given context, pair designing may help enforce the design
knowledge when evolving systems. Moreover, the practice offers a good level of predictability.

Copyright c© 2005 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2005; 17:401–423



418 E. BELLINI ET AL.

This could be a success factor for evolving projects: it can decrease the number of reworks for
specific tasks and can ease the understanding of maintenance requirements.

• Working at a task (in this case maintenance of the software’s design) does not guarantee that the
designer enforces its knowledge significantly. The standard deviations of solos’ sample, in
the experiment was higher than that of pairs’ components. This entails that a strategy to make
the designer learn by carrying out their work is necessary, and using the pair designing could be
a suitable candidate.

These conclusions are strongly related to the context in which the experiment was executed.

• The subjects were graduate and post-graduate students; it is necessary to run similar experiments
with professionals in order to verify if the outcomes also remain valid for practitioners.

• The assignments of the experiment concerned a software system with a lower complexity
than that usually shown by industrial projects: this was necessary in order to perform the
experiment in the planned time. The application of pair designing to larger projects requires
further investigation.

• The type of evolution may influence the effectiveness of pair designing in knowledge
enforcement and diffusion. Such aspects will be addressed with future research.

As future work we plan to execute further experiments in order to enforce the external validity of
the outcomes obtained with this experimentation. There are two main issues to address.

• To overcome the limitations of this research due to the specific context in which the experiments
were run, concerning the subjects involved, the projects, and the kind of evolution tasks.

• To enlarge the number of subjects forming the sample under analysis. The samples examined
for this experimentation are not large enough for ensuring a strong external validity.
Further replications of the experiments may be useful.

In addition, we plan to study other aspects of the practice, as follows.

• To understand how to form the pairs in order to maximize the benefits in terms of knowledge
enforcement and diffusion. Working in pairs could be seriously affected by the way pair’s
members achieve cooperation. Some variables can affect the success of the practice, some of
them are related to psychological aspects, others to background aspects, and so forth. Research is
needed to identify these factors and a means to handle them.

• The costs of the practice with regards to the benefits: pair designing means paying two people
to work on the same document. In some situations it can pay off: the reworking of two people
on two different documents can be more expensive than to pay two people to work on the same
document but with a few reworks. This concern deserves deeper investigation.

APPENDIX A

Here we give some of the design documentation (Figure A1, Table AI) and the Questionnaire QB
(Figure A2).

Copyright c© 2005 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2005; 17:401–423



PAIR DESIGNING AS PRACTICE FOR ENFORCING AND DIFFUSING DESIGN KNOWLEDGE 419

HeadQuarterSyste

m

Checking Tesaurus

BrenchSystem

Update User Remote Registred

User

Send User Registration

Send User Remote Registration

Brench Operator

Check Correctness/Completeness

<<include>>

<<include>>

Send Brench Regist rat ion

<<include>>

Figure A1. An excerpt of a use case.

Table AI. An excerpt of a use case specification.

Use case Send user registration

Description The branch operator inserts data into the registration form, provided by the
user. Validation of the form is launched.

Exceptions The form is not correct or complete.
The sending of data is successful.

Actors BranchOperator, HeadQuarterSystem.
Use case extends No use cases.
Use case uses Check correctness/completeness.
Use case inputs Name, address, offered books list (in case the user is a vendor) with

specifications: title, author, publisher, language, publishing year, ISBN.
Use case outputs Recording of data of the new user.
Criterion of acceptance Data of the new user are stored in the database of the local branch.
Related expectations Database management system.

Correctness and completeness checks.
Data sending to the headquarters.

Related requirements/use cases Check correctness/completeness.

Copyright c© 2005 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2005; 17:401–423



420 E. BELLINI ET AL.

1. Could Remote Registration of User (User Remote Registration Sending) extend local user registration (User
registration Sending)?

a. Yes b. No and it does not make sense c. Possible, with proper modifications

2. Does the updating of user data (User Remote Registered Updating) require the correctness and completeness
check (Correctness/Completeness Checker)?

a. Yes b. No and it does not make sense c. Possible, with proper modifications

3. Could use cases Notification of Transaction To Buyer and Notification of Transaction To Branch be merged
in one use case?

a. Yes b. No and it does not make sense c. Possible, with proper modifications

4. Could the use case Update Database extends the use case Local Book Search?

a. Yes b. No and it does not make sense c. Possible, with proper modifications

5. Given a transaction, can information concerning vendor be obtained through the Book (object)?

a. Yes b. No and it does not make sense c. Possible, with proper modifications

6. A (object) Branch Operator must have executed at least one operation, otherwise it does not exist in the
System.

a. True b. False c. This information is not provided by documentation.

7. It is possible to obtain the list of registered users in a local branch through Data contained in a Branch
(object).

a. True b. False c. This information is not provided by documentation.

8. DataHandler (object) helps query the Database.

a. True b. False c. This information is not provided by documentation.

9. Checker (object) verifies if all the fields of the form are filled in.

a. True b. False c. This information is not provided by documentation.

10. The user interface is provided only for the remote part of the system.

a. True b. False c. This information is not provided by documentation.

Figure A2. Questionnaire QB.

Copyright c© 2005 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2005; 17:401–423



PAIR DESIGNING AS PRACTICE FOR ENFORCING AND DIFFUSING DESIGN KNOWLEDGE 421

REFERENCES

1. Bentley R, Rodden T, Sawyer P, Sommerville I. An architecture for tailoring cooperative multi-user displays. Procedings
ACM Conference on Computer-Supported Cooperative Work (CSCW 1992). ACM Press: New York NY, 1992; 187–194.

2. Melnik G, Maurer F. Direct verbal communication as a catalyst of agile knowledge sharing. Proceedings IEEE Agile
Development Conference (ADC 2004). IEEE Computer Society Press: Los Alamitos CA, 2004; 21–31.

3. Jiawei H, Bailey A, Sutcliffe A. Visualisation design knowledge reuse. Proceedings 4th IEEE International Conference on
Information Visualization, 2004. IEEE Computer Society Press: Los Alamitos CA, 2004; 745–751.

4. McDowell C, Werner L, Bullock H, Fernald J. The effects of pair programming on performance in an introductory
programming course. Proceedings ACM Technical Symposium on Computer Science Education (SIGCSE 2002). ACM
Press: New York NY, 2002; 38–42.

5. Abrahamsson P, Koskela J. Extreme programming: A survey of empirical data from a controlled case study. Proceedings
IEEE International Symposium on Empirical Software Engineering (ISESE 2004). IEEE Computer Society Press: Los
Alamitos CA, 2004; 73–82.

6. Nosek JT. The case for collaborative programming. Communication of ACM 1998; 41(3):105–108.
7. Williams L, Cunningham W, Jeffries R, Kessler RR. Strengthening the case for pair programming. IEEE Software 2000;

17(4):19–25.
8. Canfora G, Cimitile A, Visaggio CA. Lessons learned about distributed pair programming: What are the knowledge

needs to address? Proceedings IEEE International Workshop on Enabling Technologies: Infrastructure for Collaborative
Enterprises (WETICE 2003). IEEE Computer Society Press: Los Alamitos CA, 2003; 314–319.

9. Williams L, Krebs W, Layman L, Antón A. Toward a framework for evaluating extreme programming. Empirical Assess-
ment in Software Engineering (EASE 2004), 2004; 11–20. Available at: http://ease.cs.keele.ac.uk/ease2004/accepted.htm
[31 May 2005].

10. Williams L, McDowell C, Fernald J, Werner L, Nagappan N. Building pair programming knowledge through a family
of experiments. Proceedings IEEE International Symposium on Empirical Software Engineering (ISESE 2003). IEEE
Computer Society Press: Los Alamitos CA, 2003; 143–152.

11. Williams L, Kessler B. The effects of ‘Pair-Pressure’ and ‘Pair-Learning’. Proceedings Conference on Software
Engineering Education and Training (CSEE&T 2000). IEEE Computer Society Press: Los Alamitos CA, 2000; 59–65.

12. Williams L, Upchurch RL. In support of student pair-programming. Proceedings ACM Technical Symposium on Computer
Science Education (SIGCSE 2001). ACM Press: New York NY, 2001; 327–331.

13. Van DerGrift T. Coupling pair programming and writing: Learning about students’ perceptions and processes. Proceedings
ACM Technical Symposium on Computer Science Education (SIGCSE 2004). ACM Press: New York NY, 2004; 2–6.

14. Ran A, Kuusela J. Design decision trees. Proceedings IEEE International Workshop on Software Specification and Design
(IWSSD 1996). IEEE Computer Society Press: Los Alamitos CA, 1996; 172–175.

15. Li Y, Yang H, Chu W. Generating linkage between source code and evolvable domain knowledge for the ease of software
evolution. Proceedings IEEE International Symposium on Principles of Software Evolution (ISPSE 2000). IEEE Computer
Society Press: Los Alamitos CA, 2000; 196–205.

16. Nonaka I. A dynamic theory of organizational knowledge creation. Organization Science 1994; 15(5):14–37.
17. Choo CW. The Knowing Organization. Oxford University Press: Oxford, 1998.
18. Blackler F. Knowledge, knowledge work and organizations: An overview and interpretation. Organization Studies 1995;

16(6):1021–1046.
19. Canfora G, Cimitile A, Visaggio CA. Working in pairs as a means for design knowledge building: An empirical study.

Proceedings IEEE International Workshop on Program Comprehension (IWPC 2004). IEEE Computer Society Press: Los
Alamitos CA, 2004; 62–69.

20. Canfora G, Cimitile A, Garcia F, Piattini M, Visaggio CA. Confirming the influence on educational background in pair-
design knowledge through experiments. Proceedings Annual ACM Symposium on Applied Computing (SAC 2005). ACM
Press: New York NY, 2005; 1478–1485.

21. Cernosek G. Next generation model-driven development.
http://www3.software.ibm.com/ibmdl/pub/software/rational/web/whitepapers/rsa-cernosek-wp.pdf [8 July 2005].

22. Ramirez A, Vanpeperstraete P, Rueckert A, Odutola K, Bennett J, Tolke L, van der Wulp M. User Manual.
http://argouml.tigris.org/documentation/defaulthtml/manual/ [8 July 2005].

23. Basili VR, Lanubile F. Building knowledge through family of experiments. IEEE Transactions on Software Engineering
1999; 25(4):456–473.

24. Kitchenham B, Pfleeger S, Pickard L, Jones P, Hoaglin D, El Emam K, Rosenberg J. Preliminary guidelines for empirical
research in software engineering. IEEE Transactions on Software Engineering 2002; 28(8):721–734.

25. Höst M, Regnell B, Wholin C. Using students as subjects—a comparative study of students and professionals in lead-
time impact assessment. Proceedings of the Conference on Empirical Assessment and Evaluation in Software Engineering
(EASE 2000). Available at: http://ease.cs.keele.ac.uk/ease2000/Ease2000Extracts.htm [30 May 2005].

Copyright c© 2005 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2005; 17:401–423



422 E. BELLINI ET AL.

AUTHORS’ BIOGRAPHIES

Emilio Bellini is a member of RCOST Research Centre on Software Technology at
University of Sannio, where he is responsible for KLEOS-RCOST Knowledge Laboratory
on Engineering for Organizational Studies. He is an Assistant Professor in Management
Engineering in the School of Engineering at the University of Sannio (Italy) where
he teaches Economics and Business Organization. He holds a Laurea in Economics
and Business, and a PhD in Economic and Management Engineering. His research
and professional interests include strategic management of organizational knowledge,
small business economics, innovation management, university–industry relationships,
ICT sector, and on these topics he has published several papers in international journals
and conference proceedings.

Gerardo Canfora is a full professor of computer science at the Faculty of Engineering
and the Director of the Research Centre on Software Technology (RCOST) of the
University of Sannio in Benevento, Italy. He serves on the program committees
of a number of international conferences. He was a program co-chair of the 1997
International Workshop on Program Comprehension; the 2001 International Conference
on Software Maintenance; of the 2004 European Conference on Software Maintenance
and Reengineering; the 2005 International Workshop on Principles of Software Evolution;
and the 2005 International Conference on Software Maintenance. He was the General
chair of the 2003 European Conference on Software Maintenance and Reengineering.
His research interests include software maintenance, program comprehension, reverse
engineering, workflow management, metrics, and experimental software engineering.
He serves on the Editorial Board of the IEEE Transactions on Software Engineering and
The Journal of Software Maintenance and Evolution: Research and Practice. He is a
member of the IEEE Computer Society.

Félix Garcı́a holds MSc and PhD degrees in Computer Science from the University of
Castilla–La Mancha (UCLM). He is assistant Professor at the Department of Computer
Science at UCLM and member of Alarcos Research Group. He is the author of several
papers and book chapters on software processes management, from the point of view of
their modeling, measurement and technology. His research interests are business process
measurement, software processes, and software measurement.

Mario Piattini holds MSc and PhD degrees in Computer Science from the Politechnical
University of Madrid, and an MSc in Psychology from the UNED. He is a Certified
Information System Auditor and Certified Information Security Manager from ISACA
(Information System Audit and Control Association). He is Full Professor at the
Department of Computer Science at the University of Castilla–La Mancha in Ciudad Real,
Spain. He is the author of several books and papers on databases, software engineering
and information systems. He leads the Alarcos research group specialized in information
system quality. His research interests are software quality, advanced database design,
metrics, software maintenance, information system audit, and security.

Copyright c© 2005 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2005; 17:401–423



PAIR DESIGNING AS PRACTICE FOR ENFORCING AND DIFFUSING DESIGN KNOWLEDGE 423

Aaron Corrado Visaggio obtained his degree in Electronic Engineering at the Politecnico
of Bari, Italy, in 2001. He developed his master thesis at the Fraunhofer IESE,
Kaiserslautern, Italy, in the field of Software Process Modeling. He is now concluding his
PhD course in Software Engineering at the University of Sannio, Italy. He currently works
as a researcher at the Research Centre on Software Technology (RCOST), University of
Sannio, Benevento, Italy. His main research interests are empirical software engineering,
agile methods, software process modeling and management, knowledge management
applied to software engineering.

Copyright c© 2005 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2005; 17:401–423


	1 INTRODUCTION
	2 RELATED WORK
	3 THE EXPERIMENTS
	3.1 Definitions
	3.2 The first experiment characterization
	Subjects
	Questionnaires
	Variables
	Rationale for the sampling of the population
	Assignment
	The process

	3.3 The replica in Spain

	4 ANALYSIS OF DATA
	4.1 The knowledge diffusion
	4.2 The knowledge enforcement
	4.3 Comparing knowledge diffusion and enforcement

	5 EXPERIMENTAL THREATS
	Threats to construct validity
	Threats to internal validity
	Threats to external validity

	6 CONCLUSIONS
	APPENDIX A

